147 research outputs found

    Numerical simulation of small perturbation on an accretion disk due to the collision of a star with the disk near the black hole

    Full text link
    In this paper, perturbations of an accretion disk by a star orbiting around a black hole are studied. We report on a numerical experiment, which has been carried out by using a parallel-machine code originally developed by D\"{o}nmez (2004). An initially steady state accretion disk near a non-rotating (Schwarzschild) black hole interacts with a "star", modeled as an initially circular region of increased density. Part of the disk is affected by the interaction. In some cases, a gap develops and shock wave propagates through the disk. We follow the evolution for order of one dynamical period and we show how the non-axisymetric density perturbation further evolves and moves downwards where the material of the disk and the star become eventually accreted onto the central body. When the star perturbs the steady state accretion disk, the disk around the black hole is destroyed by the effect of perturbation. The perturbed accretion disk creates a shock wave during the evolution and it loses angular momentum when the gas hits on the shock waves. Colliding gas with the shock wave is the one of the basic mechanism of emitting the X−X-rays in the accretion disk. The series of supernovae occurring in the inner disk could entirely destroy the disk in that region which leaves a more massive black hole behind, at the center of galaxies.Comment: 20pages, 8 figures, accepted for publication in Astrophysics and Space Scienc

    Characterisation and microleakage of a new hydrophilic fissure sealant – UltraSeal XT¼ hydroℱ

    Get PDF
    Objectives: The new hydrophilic fissure sealant, UltraSeal XTÂź hydroℱ (Ultradent Products, USA), was characterised and its in vitro resistance to microleakage after placement on conventionally acid etched and sequentially lased and acid etched molars was investigated. Materials and Methods: The sealant was characterised by Fourier transform infra-red spectroscopy, (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and Vickers indentation test. Occlusal surfaces of extracted human molars were either conventionally acid etched (n = 10), or sequentially acid etched and laser irradiated (n = 10). UltraSeal XTÂź hydroℱ was applied to both groups of teeth which were then subjected to 2500 thermocycles between 5 and 55 °C prior to microleakage assessment by fuchsin dye penetration. Results: UltraSeal XTÂź hydroℱ is an acrylate-based sealant which achieved a degree of conversion of 50.6 ± 2.2% and a Vickers microhardness of 24.2 ± 1.5 under standard light curing (1000 mWcm-2 for 20 s). Fluoride ion release was negligible within a 14-day period. SEM and EDX analyses indicated that the sealant comprises irregular sub-micron and nano-sized silicon-, barium- and aluminium-bearing filler phases embedded within a ductile matrix. Laser preconditioning was found to significantly reduce microleakage (Mann-Whitney U test, p < 0.001). The lased teeth presented enhanced surface roughness on a 50 to 100 ÎŒm scale which caused the segregation and concentration of the filler particles at the enamel-sealant interface. Conclusion: Laser preconditioning significantly decreased microleakage and increased enamel surface roughness which caused zoning of the filler particles at the enamel-sealant interface

    Analytic frameworks for assessing dialogic argumentation in online learning environments

    Get PDF
    Over the last decade, researchers have developed sophisticated online learning environments to support students engaging in argumentation. This review first considers the range of functionalities incorporated within these online environments. The review then presents five categories of analytic frameworks focusing on (1) formal argumentation structure, (2) normative quality, (3) nature and function of contributions within the dialog, (4) epistemic nature of reasoning, and (5) patterns and trajectories of participant interaction. Example analytic frameworks from each category are presented in detail rich enough to illustrate their nature and structure. This rich detail is intended to facilitate researchers’ identification of possible frameworks to draw upon in developing or adopting analytic methods for their own work. Each framework is applied to a shared segment of student dialog to facilitate this illustration and comparison process. Synthetic discussions of each category consider the frameworks in light of the underlying theoretical perspectives on argumentation, pedagogical goals, and online environmental structures. Ultimately the review underscores the diversity of perspectives represented in this research, the importance of clearly specifying theoretical and environmental commitments throughout the process of developing or adopting an analytic framework, and the role of analytic frameworks in the future development of online learning environments for argumentation

    Analyzing collaborative learning processes automatically

    Get PDF
    In this article we describe the emerging area of text classification research focused on the problem of collaborative learning process analysis both from a broad perspective and more specifically in terms of a publicly available tool set called TagHelper tools. Analyzing the variety of pedagogically valuable facets of learners’ interactions is a time consuming and effortful process. Improving automated analyses of such highly valued processes of collaborative learning by adapting and applying recent text classification technologies would make it a less arduous task to obtain insights from corpus data. This endeavor also holds the potential for enabling substantially improved on-line instruction both by providing teachers and facilitators with reports about the groups they are moderating and by triggering context sensitive collaborative learning support on an as-needed basis. In this article, we report on an interdisciplinary research project, which has been investigating the effectiveness of applying text classification technology to a large CSCL corpus that has been analyzed by human coders using a theory-based multidimensional coding scheme. We report promising results and include an in-depth discussion of important issues such as reliability, validity, and efficiency that should be considered when deciding on the appropriateness of adopting a new technology such as TagHelper tools. One major technical contribution of this work is a demonstration that an important piece of the work towards making text classification technology effective for this purpose is designing and building linguistic pattern detectors, otherwise known as features, that can be extracted reliably from texts and that have high predictive power for the categories of discourse actions that the CSCL community is interested in

    The impact of Er:YAG laser enamel conditioning on the microleakage of a new hydrophilic sealant — UltraSeal XT¼ hydroℱ

    Get PDF
    UltraSeal XT¼ hydroℱ is a new hydrophilic, light-cured, methacrylate-based pit and fissure sealant which has been developed by Ultradent Products, USA. The sealant is highly filled with a 53 wt.% mixture of inorganic particles which confer both thixotropy and radiopacity. The principal purpose of this study was to investigate the microleakage of UltraSeal XT¼ hydroℱ as a function of different enamel etching techniques. The occlusal surfaces of sound, extracted human molars were either acid etched, Er:YAG laser irradiated or successively laser irradiated and acid etched. UltraSeal XT¼ hydroℱ was applied to each group of teeth (n=10) which were subjected to a thermocycling process consisting of 2500 cycles between 5 and 50°C with a dwell time of 30s. Microleakage assessments were then carried out using 0.5 % fuchsin dye and optical microscopy. The microleakage score data were analysed using the Kruskal-Wallis, Mann–Whitney U test with Bonferroni adjustment. No significant differences in microleakage were noted between the individually acid etched and laser-irradiated groups (p>0.05); however, teeth treated with a combination of laser irradiation and acid etching demonstrated significantly lower microleakage scores (p<0.001). Electron microscopy with energy-dispersive X-ray analysis revealed that the mineral filler component of UltraSeal XT¼ hydroℱ essentially comprises micrometre-sized particles of inorganic silicon-, aluminium- and barium-bearing phases. Laser etching increases the roughness of the enamel surface which causes a concentrated zoning of the filler particles at the enamel-sealant interface

    Collaboration scripts - a conceptual analysis

    Get PDF
    This article presents a conceptual analysis of collaboration scripts used in face-to-face and computer-mediated collaborative learning. Collaboration scripts are scaffolds that aim to improve collaboration through structuring the interactive processes between two or more learning partners. Collaboration scripts consist of at least five components: (a) learning objectives, (b) type of activities, (c) sequencing, (d) role distribution, and (e) type of representation. These components serve as a basis for comparing prototypical collaboration script approaches for face-to-face vs. computer-mediated learning. As our analysis reveals, collaboration scripts for face-to-face learning often focus on supporting collaborators in engaging in activities that are specifically related to individual knowledge acquisition. Scripts for computer-mediated collaboration are typically concerned with facilitating communicative-coordinative processes that occur among group members. The two lines of research can be consolidated to facilitate the design of collaboration scripts, which both support participation and coordination, as well as induce learning activities closely related to individual knowledge acquisition and metacognition. In addition, research on collaboration scripts needs to consider the learners’ internal collaboration scripts as a further determinant of collaboration behavior. The article closes with the presentation of a conceptual framework incorporating both external and internal collaboration scripts

    Effect of Er:YAG laser enamel conditioning and moisture on the microleakage of a hydrophilic sealant

    Get PDF
    For a given sealant, successful pit and fissure sealing is principally governed by the enamel conditioning technique and the presence of moisture contamination. A new generation of hydrophilic resin sealants is reported to tolerate moisture. This study investigates the impact of Er:YAG laser pre-conditioning and moisture contamination on the microleakage of a recent hydrophilic sealant. Occlusal surfaces of extracted human molars were either acid etched (n = 30), or successively lased and acid etched (n = 30). Ten teeth from each group were either air-dried, water-contaminated, or saliva-contaminated prior to sealing with UltraSeal XT¼ hydroℱ. Samples were inspected for penetration of fuchsin dye following 3000 thermocycles between 5 and 50 °C, and the enamel–sealant interfaces were observed by scanning electron microscopy (SEM). Significant differences in microleakage were evaluated using the Mann–Whitney U test with Bonferroni adjustment (p = 0.05). Laser pre-conditioning significantly reduced dye penetration irrespective of whether the enamel surface was moist or dry. Microleakageof water-contaminated acid etched teeth was significantly greater than that of their air-dried or saliva-contaminated counterparts. SEM analysis demonstrated good adaptation in all groups with the exception of water-contaminated acid etched teeth which exhibited relatively wide gaps. In conclusion, this hydrophilic sealant tolerates the presence of saliva, although water was found to impair its sealing ability. Laser pre-conditioning significantly decreases microleakage in all cases

    Gross hematuria caused by a congenital intrarenal arteriovenous malformation: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>We report the case of a woman who presented with gross hematuria and was treated with a percutaneous embolization.</p> <p>Case presentation</p> <p>A 48-year-old Caucasian woman presented with gross hematuria, left flank pain, and clot retention. The patient had no history of renal trauma, hypertension, urolithiasis, or recent medical intervention with percutaneous instrumentation. The patient did not report any bleeding disorder and was not taking any medication. Her systolic and diastolic blood pressure values were normal at presentation. The patient had anemia (8 mg/dL) and tachycardia (110 bpm). She underwent color and spectral Doppler sonography, multi-slice computed tomography, and angiography of the kidneys, which showed a renal arteriovenous malformation pole on top of the left kidney.</p> <p>Conclusions</p> <p>The feeding artery of the arteriovenous malformation was selectively embolized with a microcatheter introduced using a right transfemoral approach. By using this technique, we stopped the bleeding, preserved renal parenchymal function, and relieved the patient's symptoms. The hemodynamic effects associated with the abnormality were also corrected.</p

    Lessons for Remote Post-earthquake Reconnaissance from the 14 August 2021 Haiti Earthquake

    Get PDF
    On 14th August 2021, a magnitude 7.2 earthquake struck the Tiburon Peninsula in the Caribbean nation of Haiti, approximately 150 km west of the capital Port-au-Prince. Aftershocks up to moment magnitude 5.7 followed and over 1,000 landslides were triggered. These events led to over 2,000 fatalities, 15,000 injuries and more than 137,000 structural failures. The economic impact is of the order of US$1.6 billion. The on-going Covid pandemic and a complex political and security situation in Haiti meant that deploying earthquake engineers from the UK to assess structural damage and identify lessons for future building construction was impractical. Instead, the Earthquake Engineering Field Investigation Team (EEFIT) carried out a hybrid mission, modelled on the previous EEFIT Aegean Mission of 2020. The objectives were: to use open-source information, particularly remote sensing data such as InSAR and Optical/Multispectral imagery, to characterise the earthquake and associated hazards; to understand the observed strong ground motions and compare these to existing seismic codes; to undertake remote structural damage assessments, and to evaluate the applicability of the techniques used for future post-disaster assessments. Remote structural damage assessments were conducted in collaboration with the Structural Extreme Events Reconnaissance (StEER) team, who mobilised a group of local non-experts to rapidly record building damage. The EEFIT team undertook damage assessment for over 2,000 buildings comprising schools, hospitals, churches and housing to investigate the impact of the earthquake on building typologies in Haiti. This paper summarises the mission setup and findings, and discusses the benefits, and difficulties, encountered during this hybrid reconnaissance mission.</jats:p
    • 

    corecore